Λομώξεις από Πολυανθεκτικά Gram-αρνητικά. Θεραπευτική προσέγγιση

Γεώργιος Λ. Δαΐκος

Ομ Καθηγητής Παθολογίας-Λοιμώξεων Ιατρική Σχολή ΕΚΠΑ Διευθυντής Β' Παθολογικής Κλινικής Νοσοκομείου «ΜΗΤΕΡΑ» An international expert proposal for interim standard definitions for acquired resistance *Magiorakos AP et al. CMI 2012;* 18: 268–281.

Definitions

- MDR: resistant to ≥3 antibiotic classes
- XDR: resistant to all but two classes, such as polymyxins and glycylcyclines),
- PDR: resistant to all commercially available antibiotics

Consequences

- Cause serious infections associated with increased morbidity and mortality
- Prolong hospital stay and increase cost
- Limited treatment options

Estimates of Burden of Antibacterial Resistance

European Union population 500m

25,000 deaths per year

2.5m extra hospital days

Overall societal costs (€ 900 million, hosp. days) Approx. €1.5 billion per year

Source: ECDC 2007

Thailand population 70m

>38,000 deaths

>3.2m hospital days

Overall societal costs US\$ 84.6–202.8 mill. direct >US\$1.3 billion indirect

Source: Pumart et al 2012

United States population 300m

>23,000 deaths

>2.0m illnesses

Overall societal costs Up to \$20 billion direct Up to \$35 billion indirect

Source: US CDC 2013

Global information is insufficient to show complete disease burden impact and costs

Antimicrobial Resistance Global Report on Surveillance 2014

Attributable deaths and disability-adjusted life-years caused 🛛 💓 🐂 🔳 by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis

Cassini A Lancet ID DOI: 10.1016/S1473-3099(18)30605-4

Characteristics of High-Risk Clones

- Global distribution and prevalence
- Association with antimicrobial resistance mechanisms
- Ability to colonize human hosts
- Effective transmission among hosts
- Cause of severe and/or recurrent infections

Mathers AJ CMR: 2015; 28: 565

Not recorded

Lee CR FronJ ers in Microbiol 2016; 7: 895

Distribution of Carbapenemases in Europe

R Canton Clin Microbiol Infect 2012; 18: 413–431

Current Trends in Epidemiology of CPEs

Hospital setting

- Predominant bacterial host
 - K. pneumoniae
- Predominant enzymes
 - КРС
 - -VIM
 - NDM
 - OXA-48

Community setting

- Predominant bacterial host
 E. coli
- Predominant enzymes
 - NDM
 - OXA-48

Karampatakis et Future Microbiol 2016

Prevalence of CP-KP by Type of Carbapenemase (2006-2017-Laiko General Hospital)

G. Daikos, Personal Data

Spectrum of excess mortality due to carbapenem-resistant Klebsiella pneumoniae infections

C. Hauck¹, E. Cober², S. S. Richter³, F. Perez^{4,5}, R. A. Salata⁵, R. C. Kalayjian⁶, R. R. Watkins^{7,8}, N. M. Scalera⁹, Y. Doi¹⁰, K. S. Kaye¹¹, S. Evans¹², V. G. Fowler, Jr.^{13,14}, R. A. Bonomo^{4,5,15,16} and D. van Duin¹, for the Antibacterial Resistance Leadership Group

aHR: 2.59 (95% CI 1.52-4.50)

aHR: 3.44 (95% CI 1.80-6.48)

ORIGINAL ARTICLE

MAYO CLINIC

CrossMark

A Predictive Model of Mortality in Patients With Bloodstream Infections due to Carbapenemase-Producing Enterobacteriaceae

TABLE 3. Assignment of Scores on the Basis of the Regression CoefficientsObtained for the Selected Variables Using Hierarchical Logistic Regression

	Regression coefficient	
Variable	(95% CI)	Score
Severe sepsis or septic shock	1.76 (1.01-2.50)	5
Pitt score ≥6	1.39 (0.54-2.25)	4
Charlson comorbidity index ≥ 2	0.93 (0.09-1.78)	3
Source of BSI other than urinary or biliary tract	0.92 (0-1.85)	3
Inappropriate early targeted therapy	0.69 (0.07-1.31)	2
Total points		17
BSI — bloodstream infection		

Validation for any type of KPC Infection

- Score < 8, mortality 21.3%
- Score \geq 8 , mortality 73.1%

AUROC: 0.78 (95% CI 0.65-0.91)

Belén Gutiérrez-Gutiérrez Mayo Clin Proc. 2016; 91: 1362

Cano A CID 2018; 66: 1204

Questions

• Are all the XDR bacteria species equal

 Are all the genotypes and phenotypes within the same species the same

 Bacteria in the same clone behave the same, are specific strains more virulent than others

KPC-Producing, Multidrug-Resistant *Klebsiella pneumoniae* Sequence Type 258 as a Typical Opportunistic Pathogen

Tzouvelekis LS AAC 2013;57:5144

Population Structure of *K. pneumoniae* ST258

Mathers AJ CMR 2015; 28: 265

Response to Treatment Consider differences

Host

Infection (site and severity)

• Bacteria

Treatment regimens

Therapeutic Options for CR-GNB Infections

Pseudomonas

- Colistin
- Fosfomycin
- Aztreonam?
- Ceftolozane/tazo
 bactam

 Ceftazidime/ avibactam

Klebsiella

- Colistin
- Aminoglycosides
- Tigecycline
- Fosfomycin
- Aztreonam?
- •Carbapenems?
- •Ceftazidime/avib actam

Acinetobacter

- Colistin
- Tigecycline
- Sulbactam
- •Trimethoprim/sulf amethoxazol
- Minocycline

Colistin resistance superimposed to endemic carbapenem-resistant *Klebsiella pneumoniae*: a rapidly evolving problem in Italy, November 2013 to April 2014

M. Monaco^{1,2}, T Giani^{2,3}, M Raffone^{1,4}, F Arena³, A Garcia-Fernandez¹, S Pollini³, Network EuSCAPE-Italy⁵, H Grundmann⁶, A Pantosti (annalisa.pantosti@iss.it)¹, G M Rossolini^{3,7,8}

Antimicrobial agent	No. of KPC-KP (% non-susceptible)
Colistin	76 (43)
Gentamicin	29 (16)
Tigecycline	11 (6)

www.eurosurveillance.org

Εξέλιξη της Αντοχής σε Στελέχη CR-Kp ΓΝΑ «ΛΑΙΚΟ» 2003-2015

Tansarli G IJAA 2018; 52: 397–403

ZAVICEFTA™ : Συγκριτική *in vitro* δραστικότητα έναντι στελεχών *Klebsiella* pneumoniae που παράγουν KPC και ΟΧΑ-48 καρβαπενεμάσες, Ελλάδα, 2014-2016

	KPC- <i>K. pneumoniae</i> (n=262)		OXA-48 - <i>K. [</i> (n=	pneumoniae 14)
	MIC ₉₀ (mg/L) Ευαισθησία %		MIC ₉₀ (mg/L)	Ευαισθησία %
Zavicefta™	2	99,6	1	100,0
Κολιστίνη	>16	61,1	>16	42,9
Τιγεκυκλίνη	4	51,9	8	71,4
Φωσφομυκίνη	512	57,3	128	78,6
Γενταμικίνη	32	69,5	>256	28,6
Μεροπενέμη	>32	1,1	>32	0

Galani I et al DOI: 10.2807/1560-7917.ES.2018.23.30.1700775

Combination therapy for carbapenem-resistant Gram-negative bacteria

Mical Paul¹*, Yehuda Carmeli², Emanuele Durante-Mangoni³, Johan W. Mouton⁴, Evelina Tacconelli⁵, Ursula Theuretzbacher⁶, Cristina Mussini⁷ and Leonard Leibovici^{8,9}

- No randomized control trial
- Observational studies
 - Small study size, selection bias
 - Different outcome definitions
 - Different definitions of combination therapy
 - Different breakpoints (EUCAST, CLSI, old, new
 - Many treatment regimens

There is no evidence-based support for most combination therapies against CR-GNB

Kaplan Meier Curves of Survival Propability of Patients with KPC BSIs According to Treatment

Multivariate Analysis of Factors Associated with all- cause 30-day Mortality of Patients with KPC BSIs								
Variable	Ρ	OR(95% CI)						
Septic shock	0.008	7.17 (1.65-31.03)						
APACHE	<0.001	1.04 (1.02-1.07)						
Inadequate empirical Rx	0.003	4.17 (1.61-10.76)						
Definitive Rx Col+tigecl+merop	0.01	0.11 (0.02-0.69)						
Tumbarello M et al. CID	2012; 55: 943	3						

Carbapenemase-Producing *Klebsiella pneumoniae* Bloodstream Infections: Lowering Mortality by Antibiotic Combination Schemes and the Role of Carbapenems

George L. Daikos,^a Sophia Tsaousi,^b Leonidas S. Tzouvelekis,^c Ioannis Anyfantis,^a Mina Psichogiou,^a Athina Argyropoulou,^d Ioanna Stefanou,^e Vana Sypsa,^f Vivi Miriagou,^g Martha Nepka,^d Sarah Georgiadou,^a Antonis Markogiannakis,^h Dimitris Goukos,^a Athanasios Skoutelis^b

2014

205 patients with CP Kp bacteremia Treatment with a combination: Independent predictor of survival!!

Effect of treatment against CP-Kp BSIs (monotherapy vs combination therapy)

By severity of underlying disease

By severity of sepsis

Effect of appropriate combination therapy on mortality of patients with bloodstream infections due to carbapenemase-producing Enterobacteriaceae (INCREMENT): a retrospective cohort study

Belén Gutiérrez-Gutiérrez*, Elena Salamanca*, Marina de Cueto, Po-Ren Hsueh, Pierluigi Viale, José Ramón Paño-Pardo, Mario Venditti, Mario Tumbarello, George Daikos, Rafael Cantón, Yohei Doi, Felipe Francisco Tuon, Ilias Karaiskos, Elena Pérez-Nadales, Mitchell J Schwaber, Özlem Kurt Azap, Maria Souli, Emmanuel Roilides, Spyros Pournaras, Murat Akova, Federico Pérez, Joaquín Bermejo, Antonio Oliver, Manel Almela, Warren Lowman, Benito Almirante, Robert A Bonomo, Yehuda Carmeli, David L Paterson, Alvaro Pascual, Jesús Rodríguez-Baño, and the REIPI/ESGBIS/INCREMENT Investigators†

aOR=1.21 (0.56-2.56) p=0.62

aHR=**0.56** (0.34-0.91) p=0.02

Lancet Infect Dis 2017

Predictors of outcome in ICU patients with septic shock caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae Clin Microbiol Infect 2016; 22: 444–450

M. Falcone¹, A. Russo¹, A. Iacovelli¹, G. Restuccia¹, G. Ceccarelli¹, A. Giordano¹, A. Farcomeni¹, A. Morelli² and M. Venditti¹ 1) Department of Rubic Health and Infectious Diseases and 2) Department of Anesthesiology and Intensive Care, Ruidinico Umberto I, "Sepienza" University of Rome, Italy

Carbapenemase-producing Klebsiella pneumoniae bloodstream infection in critically ill patients: risk factors and predictors of mortality Eur J Clin Microbiol Infect Dis 2017; 36: 1125-31

M. Papadimitriou-Olivgeris¹ &F. Fligou² &C. Bartzavali³ &A. Zotou² &A. Spyropoulou³ & K. Koutsileou² &S. Vamvakopoulou³ &N. Sloulas² &V. Karamouzos² & E. D. Anastassiou³ &I. Spiliopoulou³ &M. Christofidou³ &M. Marangos¹

RESEARCH ARTICLE

2016; 91: 1076-81

AJH

Bloodstream infections caused by Klebsiella pneumoniae in onco-hematological patients dinical impact of carbapenem resistance in a multicentre prospective survey

Enrico Maria Trecarichi,¹* Livio Pagano,² Bruno Martino,³ Anna Candoni,⁴ Roberta Di Blasi,² Gianpaolo Nadali,⁵ Luana Fianchi,² Mario Delia,⁶ Smona Sca,² Vincenzo Perriello,⁷ Alessandro Busca,⁸ Franco Aversa,⁹ Rosa Fanci,¹⁰

Carbapenemase-producing Klebsiella pneumoniae bloodstream infections in neutropenic patients with haematological malignancies or aplastic anaemia: Analysis of 50 cases UJAA 2016; 47: 335-9

Polydoros Tofas^a, Anna Skiada^a, Maria Angelopoulou^b, Nikolaos Spsas^c, Ioanna Pavlopoulou^a, Sofia Tsaousi^d, Maria Pagoni^e, Maria Kotsopoulou^f, Stavroula Perlorentzou^f, Anastasia Antoniadou^g, Maria Pirounaki^h, Athanasios Skoutelis^d, George L. Daikos^{a,*}

Mortality of Patients with Hematologic Malignanciesnand BSIs Caused by CP-Kp

Cumulative survival probability by Cox Regression after adjustment for septic shock, unresolved neutropenia and empirical therapy

Tofas et al. IJAA 2016 CP-KP: Carbapenemase producing *Klebsiella pneumoniae*

Πρόγραμμα κλινικών δοκιμών φάσης ΙΙΙ της Κεφταζιντίμης-Αβιμπακτάμης (CAZ-AVI)

Επτά προοπτικές, διεθνείς, πολυκεντρικές, τυχαιοποιημένες μελέτες Φάσης ΙΙΙ

BAT: Βέλτιστη Διαθέσιμη Θεραπεία, **CAZ**: Κεφταζιντίμη, **CE**: κλινικά αξιολογήσιμος πληθυσμός, **clAIs**: επιπλεγμένες ενδοκοιλιακές λοιμώξεις, **cMITT**, κλινικά τροποποιημένος πληθυσμός με πρόθεση θεραπείας, **cUTIs**, επιπλεγμένες λοιμώξεις ουροποιητικού, συμπεριλαμβανομένης της οξείας πυελονεφρίτιδας, **EMA**: Ευρωπαϊκός Οργανισμός Φαρμάκων , **FDA**: Οργανισμός Τροφίμων και Φαρμάκων των ΗΠΑ, **HAP**: νοσοκομειακή πνευμονία, **MITT**, τροποποιημένος πληθυσμός με πρόθεση θεραπείας, **mMITT**: μικροβιολογικά τροποποιημένος πληθυσμός με πρόθεση θεραπείας, **TOC**: επαλήθευση ίασης, **VAP**: πνευμονία σχετιζόμενη με αναπνευστήρα, 1. Mazuski JE et al. *Clin Infect Dis*. 2016;62:1380–1389 2. *X. Qin et al. Int Journal of Antimicrobial Agents 49 (2017) 579–588. 3. Wagenlehner F, et al. Clin Infect Dis*. 2016;63:754-62. 4. Carmeli Y et al, Lancet Infect Dis 2016;16: 661–73. 5. Lancet Infect Dis 2018; 18: 285–95

Κεφταζιντίμη-Αβιμπακτάμη: Θεραπευτικές ενδείξεις

Η Κεφταζιντίμη-Αβιμπακτάμη ενδείκνυται για τη θεραπεία των ακόλουθων λοιμώξεων σε ενήλικες:

- 1. Επιπλεγμένη ενδοκοιλιακή λοίμωξη (cIAI)
- Επιπλεγμένη ουρολοίμωξη (cUTI), συμπεριλαμβανομένης της πυελονεφρίτιδας
- Νοσοκομειακή πνευμονία, συμπεριλαμβανομένης της πνευμονίας σχετιζόμενης με τον αναπνευστήρα (VAP)
- Θεραπεία λοιμώξεων που οφείλονται σε αερόβιους Gramαρνητικούς μικροοργανισμούς, σε ενήλικους ασθενείς με περιορισμένες επιλογές θεραπείας

Χαρακτηριστικά Ασθενών με ΚΡC-Κρ Λοιμώξεις που Έλαβαν Θεραπεία με CAZ-AVI

Νο. Ασθενών	138
Ηλικία (δίαμεση)	60
Charlson >3	47 (34.1%)
ΜΕΘ	46 (33.3%)
Σηπτικό shock	43 (31.2%)
CAZ-AVI σε συνδυασμό	109 (78.9%)
Θνητότητα (30-ημέρες)	47 (34.1%)
Υποτροπή	12 (8.7%)
Αντοχή	3 (2.2%)

Tumbarello M CID 2018 doi: 10.1093/cid/ciy492

Ανεξάρτητοι Παράγοντες Κινδύνου για Θνητότητα σε 208 Ασθενείς με KPC-Kp BSIs

Μεταβλητή	OR (95%CI)	Р
Μηχανικός αερισμός	4.31 (1.99-9.33)	<0.001
Charlson >3	3.3 (1.61-6.77)	0.001
Ουδετεροπενία	3.36 (1.25-8.75)	0.03
Σηπτικό Shock	2.94 (1.46-5.92)	0.003
Θεραπεία με CAZ-AVI	0.27 (0.13-0.57)	0.001

Tumbarello M CID 2018 doi: 10.1093/cid/ciy492

Χαρακτηριστικά Ασθενών με CRE-OXA-48 Λοιμώξεις που Έλαβαν Θεραπεία με CAZ-AVI

Νο. Ασθενών	57
Ηλικία (δίαμεση)	64
Charlson (διάμεση)	3
ΜΕΘ	22 (30%)
Βακτηριαιμία	26(46%)
Σηπτικό shock	20 (35%)
INCREMENT CPE Score (διάμεση)	6
CAZ-AVI μονοθεραπεία	46 (81%)
Θνητότητα (30-ημέρες)	12 (22%)
Υποτροπή	6 (10%)
Αντοχή Sousa A IAC, 2018 doi: 10 1093/ia	0 (0%)
CAZ-AVT μονοθεραπεια Θνητότητα (30-ημέρες) Υποτροπή Αντοχή Sousa A JAC 2018 doi: 10.1093/ja	40 (81%) 12 (22%) 6 (10%) 0 (0%) ac/dky295

Συστάσεις για τη χορήγηση του συνδυασμού Κεφταζιντίμη-Αβιμπακτάμη

(Οδηγίες της Εθνικής Επιτροπής Αντιβιογράμματος)

Στοχευμένη Θεραπεία:

- Σε λοιμώξεις από εντεροβακτηριακά που παράγουν καρβαπενεμάση (CPE) τύπου KPC ή OXA-48 με in vitro ευαισθησία στο εν λόγω φάρμακο.
- Σε λοιμώξεις από ψευδομονάδα με in vitro ευαισθησία στο εν λόγω φάρμακο, όταν δεν υπάρχει άλλη αποτελεσματική θεραπεία.

Risk factors for carbapenem-resistant Klebsiella pneumoniae bloodstream infection among rectal carriers: a prospective observational multicentre study Clin Microbiol Infect 2014; 20:1357–62

M. Giannella¹, E. M. Trecarichi², F. G. De Rosa³, V. Del Bono⁴, M. Bassetti⁵, R. E. Lewis¹, A. R. Losito², S. Corcione³, C. Saffioti⁴, M. Bartoletti¹, G. Maiuro², C. S. Cardellino³, S. Tedeschi¹, R. Cauda², C. Viscoli⁴, P. Viale¹ and M. Tumbarello²

TABLE 2.	Logistic	regression	analysis	of	risk	factors	for
CR-KP BS	l develop	ment in rec	tal carrie	rs			

	OR (95% CI)	P-value	Risk score point
Admission to ICU	1.65 (1.05-2.59)	0.03	2
Invasive abdominal procedures	1.87 (1.16-3.04)	0.01	3
Chemotherapy/radiation therapy	3.07 (1.78-5.29)	< 0.0001	4
Colonization at site besides stool (risk per each additional site)	3.37 (2.56-4.43)	<0.0001	5 per site

Validation of the score

- Score <7: infection 6.3%
- Score ≥7: infection 84.8%
- Sensitivity: 92.9%
- Specificity: 85%

Cano A, CID 2018; 66: 1204

Συστάσεις για τη χορήγηση του συνδυασμού Κεφταζιντίμη-Αβιμπακτάμη

(Οδηγίες της Εθνικής Επιτροπής Αντιβιογράμματος)

Εμπειρική Θεραπεία

- Μπορεί να χορηγηθεί επί κλινικής υποψίας λοίμωξης, σε ασθενείς με παράγοντες κινδύνου για λοίμωξη από CPE, όπως:
- Α. Προηγούμενη λοίμωξη ή αποικισμό από CPE που παράγει KPC ή OXA-48.
- Β. Νοσηλεία σε ΜΕΘ το τελευταίο εξάμηνο.
- Γ. Νοσηλεία στον ίδιο θάλαμο με γνωστούς φορείς των μικροβίων αυτών.

Και έχοντες τουλάχιστον ένα από τα παρακάτω:

- 1. Κατάσταση του ξενιστή: Βαρέως πάσχοντες, ασθενείς ΜΕΘ, ανοσοκατεσταλμένοι ασθενείς.
- 2. Βαρύτητα της λοίμωξης: Ασθενείς με σοβαρή σήψη, σηπτική καταπληξία.

Figure 2. Efficacy Endpoints in Patients with HABP/VABP or Bacteremia, by Timepoint (mCRE-MITT)

^a Composite of either microbial eradication or presumed eradication at respective visit.

* One subject in the M-V arm was indeterminate/not assessed at TOC.

CARE Efficacy Results (Randomized Cohort 1) Reduced Mortality at Day 28 for Plazomicin Versus Colistin

Two-sided 90% confidence interval (CI) calculated based on the unconditional exact method.

Connoly L ASM Microbe 2017

J Antimicrob Chemother doi:10.1093/jac/dkx496

Clinical outcomes after combination treatment with ceftazidime/avibactam and aztreonam for NDM-1/OXA-48/ CTX-M-15-producing *Klebsiella pneumoniae* infection

Evelyn Shaw^{1,2}*, Alexander Rombauts¹, Fe Tubau^{3,4}, Ariadna Padullés⁵, Jordi Càmara³, Toni Lozano⁵, Sara Cobo-Sacristán⁵, Núria Sabe^{1,2}, Imma Grau^{1,4,6}, Raül Rigo-Bonnin⁷, M. Angeles Dominguez^{2,3,6} and Jordi Carratalà^{1,2,6}

- 10 pts were treated with Ceftazidime/avibactam plus aztreonam
- 5 had bloodstream infection
- Clinical success 6/10
- 3 deaths
- 1 recurrence

WHO Pathogens Priority List

Acinetobacter baumannii carbapenem-resistant

Pseudomonas aeruginosa carbapenem-resistant

Enterobacteriaceae carbapenem-resistant, 3rd gen. cephalosporin-resistant

Τυχαιοποιημένες Μελέτες

- Colistin vs Colistin + Rifampicin (Durante-Mangoni et al)
 - 210 ασθενείς ΜΕΘ με απειλητική για τη ζωή λοίμωξη από XDR A. baumannii
 - Colistin 2 MU x 3 (χωρίς δόση φόρτισης) ± Rifampicin 600 mg x 2 (Openlabel)
 - Δεν τεκμηριώθηκε διαφορά στη συνολικη θνητότητα στις 30 ημέρες (43,3% vs 42,9%) ή στη θνητότητα από λοίμωξη (21.1% vs 26.6%)
 - Σημαντική διαφορά στο ποσοστό μικροβιολογικής εκκρίζωσης (60.6% vs 44.8%, p=0.034)
- Colistin vs Colistin + Rifampicin (Aydemir et al)
 - 43 ασθενείς με VAP από XDR A. baumannii
 - Colistin 4,5 MU/d (χωρίς δόση φόρτισης) ± Rifampicin 600 mg/d (Openlabel)
 - Η κλινική, μικροβιολογική και ακτινολογική ανταπόκριση ήταν καλύτερη με το συνδυασμό αλλά όχι σε σημαντικό βαθμό.
 - Ο χρόνος μικροβιολογικής ίασης ήταν σημαντικά βραχύτερος με το συνδυασμό (4,5d vs 3,1d p=0.029).

Τυχαιοποιημένες Μελέτες

- Colistin vs Colistin + Fosfomycin (Sirijatuphat et al)
 - 94 ασθενείς με λοιμώξεις από CR A. baumannii
 - Colistin 5mg CBA/Kg/d (χωρίς δόση φόρτισης) ± Fosfomycin (iv) 4 g x 2 (Open-label)
 - Δεν τεκμηριώθηκε διαφορά στη συνολικη θνητότητα στις 30 ημέρες (53.8% vs 44.2%) ή στη θνητότητα από λοίμωξη (23.1% vs 16.3%)
 - Σημαντική διαφορά στο ποσοστό μικροβιολογικής εκκρίζωσης στις 72 ώρες (65.7% vs 87.8%, p=0.028)
- Colistin vs Colistin + Ampicillin/Sulbactam (Makris et al)
 - 39 ασθενείς με VAP από CR A. baumannii
 - Colistin 3 MU x 3 (χωρίς δόση φόρτισης) ± Ampicillin/Sulbactam 6 gr x 4 (Open-label)
 - Δεν τεκμηριώθηκε διαφορά στη συνολικη θνητότητα στις 30 ημέρες (63.2% vs 50.0%)
 - Σημαντική διαφορά στην κλινική ανταπόκριση στις 4-5 ημέρες (15.85% vs 70.0%, OR=12.4 p=0.001)

Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant Gram-negative bacteria: an open-label, randomised controlled trial

Mical Paul, George L Daikos, Emanuele Durante-Mangoni, Dafna Yahav, Yehuda Carmeli, Yael Dishon Benattar, Anna Skiada, Roberto Andini, Noa Eliakim-Raz, Amir Nutman, Oren Zusman, Anastasia Antoniadou, Pia Clara Pafundi, Amos Adler, Yaakov Dickstein, Ioannis Pavleas, Rosa Zampino, Vered Daitch, Roni Bitterman, Hiba Zayyad, Fidi Koppel, Inbar Levi, Tanya Babich, Lena E Friberg, Johan W Mouton, Ursula Theuretzbacher, Leonard Leibovici

	Colistin (n=198)	Colistin and meropenem (n=208)	RR (95% Cl) for outcome with combination*	p value
Primary outcome				
Clinical failure at day 14	156 (79%)	152 (73%)	0·93 (0·83 - 1·03)	0.172
Secondary outcomes				
28-day mortality	86 (43%)	94 (45%)	1.03 (0.84-1.28)	0.781
Disposition at day 28				0.550
Dead	86 (43%)	94 (45%)		
Alive, not discharged	60 (30%)	70 (34%)		
Alive, discharged home	30 (15%)	22 (11%)		
Alive, discharged to chronic care	22 (11%)	22 (11%)		
14-day mortality	64 (32%)	70 (34%)	1·04 (0·79 - 1·37)	0.786
Failure with modification†	171 (86%)	177 (85%)	0·99 (0·91 - 1·07)	0.724
Microbiological failure	62 (31%)	73 (35%)	1.1 (0.84–1.44)	0.489

Figure 2: Survival analysis to day 28 after randomisation

Lancet Infec Dis 2018

Monotherapy Compared to Combination for the Treatment of CR Acinetobacter Infections (ESCMID Guidelines in preparation)

year	Monotherapy	Combination	size	OR (95% CI)	
Observational					
Tseng, 2007	ampicillin/sulbad	taarbapenem + MIX	50	0.69 (0.22, 2.14)	
Kuo, 2007	carbapenem	carbapenem + MIX	48	2.48 (0.65, 9.40)	
Tasbakan MS, 2011	tigecycline	tigecycline+other	72	0.82 (0.30, 2.21)	
Lim, 2011	colistin	colistin+MIX	31	0.51 (0.11, 2.38)	
Ye JJ, 2011	tigecycline	tigecycline+MIX	116	0.44 (0.19, 1.01)	
Simsek F, 2012	colistin	colistin+MIX	51	2.10 (0.66, 6.67)	
Hernández-Torres, 2012	MIX	MIX	70	4.72 (1.71, 13.03)
Ku K, 2013	colistin	colistin+tigecycline	106	0.73 (0.28, 2.07)	
Garnacho-Montero J, 20	18olistin	colistin+vancomyc	in57	1.07 (0.38, 3.03)	
López-Cortés LE, 2014	MIX	MIX	101	0.96 (0.38, 2.55)	
Kalin G, 2014	colistin	colistin+sulbactam	82	0.40 (0.15, 1.06)	
Batirel A, 2014	colistin	colistin+MIX	248	1.91 (0.92, 3.97)	
Rigatto MH, 2015	polymyxin B	polymyxin B+MIX	83	1.74 (0.71, 4.30)	
Yilmaz GR, 2015	colistin	colistin+MIX	70	0.54 (0.18, 1.63)	
Petrosillo N, 2015	colistin	colistin+glycopeptic	089b	1.31 (0.58, 2.95)	
Freire P, 2016	polymyxin B/E	polymyxin+AG	92	5.00 (1.33, 18.81)
Kim WY, 2016	colistin/tigecycl	inMIX	70	1.36 (0.48, 3.85)	
Amat T, 2017	colistin	colistin+tigecycline	118	1.22 (0.58, 2.62)	
Liang CA, 2017	tigecycline	tigecycline+MIX	260	1.04 (0.63, 1.73)	
Subtotal (I-squared = 4	4.0%, p = 0.021)			1.15 (0.88, 1.54)	
RCT					
Aydemir H, 2013	colistin	colistin+rifampicin	43	1.64 (0.45, 5.94)	
Durante-Mangoni E, 201	3colistin	colistin+rifampicin	209	0.98 (0.57, 1.70)	
Sirijatuphat R, 2014	colistin	colistin+fosfomyci	n 94	1.41 (0.62, 3.17)	
Paul M, 2018	colistin	colistin+carbapener	m312	0.79 (0.51, 1.24)	
Subtotal (I-squared = 0	0%, p = 0.524)			0.96 (0.71, 1.31)	
Overall (I-squared = 37	4%, p = 0.037)			1.12 (0.89, 1.41)	
E: Weights are from rar	dom effects ana	lysis			
			.1	1 10	

Monotherapy Compared to Combination for the Treatment of CR Acinetobacter Infections

(ESCMID Guidelines in preparation)

Author,			Sample	2				%
year	Monotherapy	Combination	size				OR (95% CI)	Weig
PDR					1			
Tseng, 2007	ampicillin/sulbac	cta ca rbapenem + MIX	X 50				0.69 (0.22, 2.14)	3.21
Kuo, 2007	carbapenem	carbapenem + MI)	X 48				2.48 (0.65, 9.40)	2.47
Subtotal (I-squared = 51	.1%, p = 0.153)						1.24 (0.36, 4.32)	5.68
2 active potential								
Tasbakan MS, 2011	tigecycline	tigecycline+other	72				0.82 (0.30, 2.21)	3.85
Simsek F, 2012	colistin	colistin+MIX	51				2.10 (0.66, 6.67)	3.09
Hernández-Torres, 2012	MIX	MIX	70		· · · · · · · · · · · · · · · · · · ·		4.72 (1.71, 13.03)	3.74
Ku K, 2013	colistin	colistin+tigecyclin	e106				0.73 (0.26, 2.07)	3.62
Sirijatuphat R, 2014	colistin	colistin+fosfomyc	cir94				1.41 (0.62, 3.17)	5.02
López-Cortés LE, 2014	MIX	MIX	101		· · · · · · · · · · · · · · · · · · ·		0.96 (0.36, 2.55)	3.96
Batirel A, 2014	colistin	colistin+MIX	248				1.91 (0.92, 3.97)	5.65
Freire P, 2016	polymyxin B/E	polymyxin+AG	92				- 5.00 (1.33, 18.81)	2.50
Kim WY, 2016	colistin/tigecycli	ineMIX	70		1		1.36 (0.48, 3.85)	3.62
Amat T, 2017	colistin	colistin+tigecyclin	e118				1.22 (0.56, 2.62)	5.37
Liang CA, 2017	tigecycline	tigecycline+MIX	260				1.04 (0.63, 1.73)	7.98
Subtotal (I-squared = 32	.6%, p = 0.138)				\sim		1.44 (1.04, 2.00)	48.38
1 active drug								
Lim. 2011	colistin	colistin+MIX	31				0.51 (0.11, 2.38)	1.98
Ye JJ. 2011	tigecycline	tigecycline+MIX	116				0.44 (0.19, 1.01)	4.91
Avdemir H. 2013	colistin	colistin+rifampicin	43				1.64 (0.45, 5.94)	2.62
Garnacho-Montero J 201	3 colistin	colistin+vancomv	ciā7		<u> </u>		1 07 (0 38 3 03)	3.62
Durante-Mangoni E 2013	colistin	colistin+rifamoicin	209				0.98 (0.57, 1.70)	7 49
Kalin G. 2014	colistin	colistin+sulbactam	. 82				0.40 (0.15, 1.08)	3.94
Rigatto MH, 2015	polymyxin B	polymyxin B+MIX	83				1.74 (0.71, 4.30)	4.38
Yilmaz GR. 2015	colistin	colistin+MIX	70				0.54 (0.18, 1.63)	3.29
Petrosillo N. 2015	colistin	colistin+alvcopent	tices.	-			1.31 (0.58, 2.95)	5.01
Paul M 2018	colistin	colistin+carbanene	er812				0.79 (0.51, 1.24)	8 71
Subtotal (I-squared = 17	.1%, p = 0.286)	constitutionsperie		<	\geq		0.85 (0.64, 1.13)	45.94
Overall (I-squared = 37.4	4%, p = 0.037)						1.12 (0.89, 1.41)	100.0
NOTE: Weights are from random effects analy	min.							
				1	1	10		
				Favoring MONO	Favoring COMBI			

RESEARCH

Open Access

Antimicrobials for the treatment of drugresistant *Acinetobacter baumannii* pneumonia in critically ill patients: a systemic review and Bayesian network meta-analysis

Intervention	SUCRA %	Posterior estimates Median (95% Crl)	
SUL	100.0	0.18 (0.04–0.42)	
HD SUL	85.7	0.31 (0.07–0.71)	—
FOS + IV COL	78.6	0.34 (0.19–0.54)	⊢
IH COL + IV COL	71.4	0.39 (0.32–0.46)	H
HD TIG	71.4	0.39 (0.16–0.67)	
RIF + IV COL	57.1	0.43 (0.31–0.55)	⊢
IV COL	57.1	0.45 (0.41–0.48)	HEH
GLY + IV COL	50.0	0.48 (0.32-0.64)	⊢
IH COL	42.9	0.52 (0.09-0.92)	⊢−−−− 1
TIG + IH COL	35.7	0.54 (0.18–0.87)	F
CAR + IV COL	35.7	0.56 (0.29–0.81)	⊢−−− 4
TIG	28.6	0.59 (0.47–0.69)	⊢ ∎→1
CAR + IH COL	21.4	0.61 (0.28–0.86)	F4
SUL + IH COL	14.3	0.65 (0.26-0.91)	
SUL + IV COL	7.1	0.68 (0.37-0.89)	F

Fig. 3 Surface under the cumulative ranking curve (SUCRA) rankings and posterior estimates of treatment effect on all-cause mortality. Greater SUCRA value indicate higher probability of being the best treatment for reducing all-cause mortality. *Abbreviations: CAR* carbapenem (imipenem or meropenem), *COL* colistin, *Crl* credible interval, *FOS* fosfomycin, *GLY* glycopeptide (vancomycin or teicoplanin), *HD* high-dose, *IH* inhaled, *IV* intravenous, *RIF* rifampin, *SUL* sulbactam, *TIG* tigecycline

Proposed Therapeutic Approach for CRAB Infections

Piperaki et al CMI 2019

Optimizing Current Treatment Options

• Carbapenems

 High dose, prolonged infusion, or continuous infusion with TDM

Colistin

Loading dose, preferably in combination when the MIC of the infecting organism > 0.5mg/L

Fosfomycin

 For systemic infections 6 g IV q 6 h, always in combination with another active agent

Tigecycline

- Optimize PK/PD with high dose (100mg q 12h)

Aminoglycosides

- Once daily, high dose with TDM

Νεότερα Φάρμακα με Δράση έναντι Πολυανθεκτικών Gram-αρνητικών

- β-lactamase inhibitors
 - -Avibactam + Ceftazidime, EMA, FDA approved)
 - -Relebactam + Imipenem, Φάση III
 - —Vaborbactam + Meropemem, FDA approved
- <u>Cedtolazone-taz/ctam (EMA, FDA approved</u>)
- Siderophores (Cefiderocol, φάση III)
- Plazomicin (FDA approved)
- Erevacycline (FDA approved)

Conclusions

- The existing studies provide low quality of evidence for making treatment decisions against XDR bacteria
- Therapy of XDR pathogens must be individualised, considering host, severity of infection and bacteria related factors
- Combination therapy with 2 active drugs is associated with improved survival in high-risk infections caused by CRE
- Monotherapy is probably effective in low-risk CRE infections
- For Acinetobacter four RCTs do not support the use of combination therapy
- Best drug(s) are not well defined
- Specific mortality scores may be useful for making treatment decisions