Μετεκπαιδευτικό Σεμινάριο Λοιμώξεων

«Ενιαία υγεία και λοιμώξεις στη Λεκάνη της Μεσογείου / Οστικό Έλλειμμα και Λοίμωξη»

Aspergillus resistant to azoles: what do we know about the Mediterranean area?

Joseph Meletiadis, PhD, FECMM Assistant Professor in Mycology

Clinical Microbiology Laboratory,
«Attikon» University General Hospital,
National and Kapodistrian University of Athens, Greece

Aspergillus lung infections

Allergic aspergillosis

- allergic bronchopulmonary aspergillosis (ABPA)
- severe asthma with fungal sensitization

Aspergillus bronchitis

- cystic fibrosis or bronchiectasis, lung transplant recipients, and those receiving mechanical ventilation
- Chronic pulmonary aspergillosis (CPA)
 - immunocompetent patients with underlying lung disease
 - cavitary CPA, fibrosing CPA, nodule and single aspergilloma

Invasive aspergillosis (IA)

- hematopoietic stem cell (HSCT) or solid organ transplant recipients
- Under chemotherapy or corticosteroids

Epidemiology

- >10 million cases with allergic manifestations annually
- >1.2 million have chronic pulmonary aspergillosis
- >200.000 cases of invasive aspergillosis (IA) annually
- Triazoles have been the mainstay of therapy
- Mortality rates associated with IA remain high 30-50%
- Aspergillus fumigatus remains the most common species in all pulmonary syndromes
- Aspergillus flavus is a more common cause of allergic rhinosinusitis, postoperative aspergillosis, and fungal keratitis.

Common Aspergillus species

10-15% cryptic species

Epidemiological change in A. fumigatus

Azole-resistance phenotypes of A. fumigatus

88-100% mortality rates

CYP51A mutations

Nijmegen cases

Tandem repeats in promoter region

- TR34/L98H (70-90%)→gene overexpression
- TR46/Y121F/T289A (10-30%)→high VRC R
- TR53 → ITC and VRC resistance
- Environmental isolates (>95%)
- Soil samples with azole fungicides
- Intercountry transfer
- Clinical strains from azole naïve patients

Manchester cases

Point Mutations

- •G54 E/R/W → ITC & POS R
- G138 C/S → ITC & VOR R
- G448 S → VRC R
- M220 I/V/T/K/R → different R profiles
- Other mutations (P216L,F219C etc)
- Clinical isolates from CPA patients after 4mo (3w-23mo) azole therapy
- Some environmental isolates with G54

Development of Azole Resistance

Patient route

Environmental route

Mapping of Cyp51A mutations

G54W

→ ITC&POS R G54E

→ ITC R

M220R/I/V

→ITC R M220K

→ ITC & POS R

Non-CYP51 mutations

- Up to 50% without mutations in cyp51A or promoter duplications
- CYP51B overexpression
- Activation of efflux pumps
 - ABC and MFS transporters
- CCAAT-binding transcription factor complex
 - Mutation P88L in HapE subunit
- Oxidative stress tolerance
 - mutations in genes Yap1 and AldA
- loss of algA (calcium-dependent protein encoding gene)
- R243Q mutation in farnesyltransferase (AfCox10) gene
- Cholesterol import to compensate for ergosterol depletion
 - SrbA (a transcriptional regulator of the sterol regulatory element binding protein)

Cyp51 substitutions in non-A. fumigatus

TABLE 3 Cyp51 substitutions in non-A. fumigatus organisms and their correspondence to the reference positions used

	Reference position ^a			Observed substitution	
Organism	Gene	Position ^b	Reference	Gene	Substitution
A. flavus	Afcyp51A	Y68	29	cyp51A	Y132N
	Afcyp51A	K133	29	cyp51A	K197N
	Afcyp51A	NA		cyp51A	A205T
	Afcyp51A	D280	29	cyp51A	D282E
	Afcyp51A	M286	29	cyp51A	M288L
	Afcyp51A	T470	29	cyp51A	T469S
	Ztcyp51B	H430	29	cyp51B	H399P
	Ztcyp51B	A453	29	cyp51B	D411N
	Ztcyp51B	T496	29	cyp51B	T454P
	Ztcyp51B	NA		cyp51B	T486P
	Afcyp51C	M54	Proposed here	cyp51C	M54T
	Afcyp51C	S196	Proposed here	cyp51C	S196F
	Afcyp51C	S240	Proposed here	cyp51C	S240A
	Afcyp51C	D254	Proposed here	cyp51C	D254N
	Afcyp51C	1285	Proposed here	cyp51C	1285V
	Afcyp51C	Y319	Proposed here	cyp51C	Y319H
	Afcyp51C	A324	Proposed here	cyp51C	A324P
	Afcyp51C	N423	Proposed here	cyp51C	N423D
	Afcyp51C	V465	Proposed here	cyp51C	V465 M
A. terreus	Afcyp51A	M220	29	cyp51A	M217l
A. niger	Afcyp51A	K230	29	cyp51A	R228Q
A. tubingensis	Afcyp51A	L21	29	cyp51A	L21F

Global distribution

SCARE multicenter prospective study

3,788 Aspergillus isolates were screened from 2009-2011 from 21 centers

60 azole-resistant A. fumigatus SC isolates in 11/19 centers (58%)

Prevalence of resistance = 3.2% (0-26%)

47 A. fumigatus sensu stricto isolates

85% CYP51A mutations

- 55% TR₃₄/L98H, TR₄₆/Y121G/T289A
- 30% single point mutations (M220, G54)

15% non-CYP51A

13 A. fumigatus sibling species

7 A. lentulus

4 N. pseudofisheri

2 N. udagawae

A. fumigatus:

ITZ-resistant (>2 mg/L) 100%

VCZ-resistant (>2 mg/L) 60%

PCZ-resistant (>0.5 mg/L) 58%

Sibbling species:

ITZ-resistant (>2 mg/L) 100%

VCZ-resistant (>2 mg/L) 82%

PCZ-resistant (>0.5 mg/L) 18%

Azole-resistant A. fumigatus in Europe

(number of isolates/patients screened)

Azole Resistance in *Aspergillus fumigatus* Clinical Isolates from an Italian Culture Collection

Cristina Lazzarini,^a Maria Carmela Esposto,^a Anna Prigitano,^a Massimo Cogliati,^a Gabriella De Lorenzis,^b Anna Maria Tortorano^a

Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy^a; Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy^b

TABLE 1 Itraconazo	le resistance	according to	year of isolation
--------------------	---------------	--------------	-------------------

Year	No. of tested isolates	No. of patients	No. (%) of itraconazole-resistant isolates ^a	No. (%) of patients harboring resistant isolates
1995	33	24	0	0
1996	21	15	0	0
1997	31	23	0	0
1998	41	26	5 (12.2)	5 (19.2)
1999	37	32	4 (10.8)	2 (6.3)
2000	49	48	3 (6.1)	3 (6.3)
2001	57	57	4 (7.0)	4 (7.0)
2002	60	51	4 (6.7)	3 (5.9)
2003	81	58	8 (9.9)	4 (6.9)
2004	62	54	1 (1.6)	1 (1.9)
2005	37	36	0	0
2006	24	17	2 (8.3)	2 (11.8)

70% TR34/L98H

30% G54E

^a MIC of >2 mg/liter.

First determination of azole resistance in Aspergillus fumigatus strains carrying the TR34/L98H mutations in Turkey.

Özmerdiven GE¹, Ak S², Ener B³, Ağca H¹, Cilo BD¹, Tunca B², Akalın H⁴.

Author information

- 1 Uludağ University, Faculty of Medicine, Department of Medical Microbiology, Görükle, 16059 Bursa, Turkey.
- 2 Uludağ University, Faculty of Medicine, Department of Medical Biology, Görükle, 16059 Bursa, Turkey.
- 3 Uludağ University, Faculty of Medicine, Department of Medical Microbiology, Görükle, 16059 Bursa, Turkey. Electronic address: bener@uludag.edu.tr.
- 4 Uludağ University, Faculty of Medicine, Department of Clinical Microbiology and Infectious Diseases, Görükle, 16059 Bursa, Turkey.
- Culture collection of A. fumigatus isolates collected between 1999 and 2012 from clinical specimens.
- 746 A. fumigatus isolates from 419 patients.
- 10.2% Itraconazole resistance
- From 2000 onwards, patients were observed annually with an itraconazole-resistant isolate.
- Presence of TR34/L98H in 86.8% (n = 66) of isolates

Molecular Identification and Susceptibility Testing of Molds Isolated in a Prospective Surveillance of Triazole Resistance in Spain (FILPOP2 Study)

© Ana Alastruey-Izquierdo, a,n Laura Alcazar-Fuoli, a,n Olga Rivero-Menéndez, a Josefina Ayats, b,n Carmen Castro, c Julio García-Rodríguez, d Lidia Goterris-Bonet, e Elisa Ibáñez-Martínez, f María José Linares-Sicilia, g M. Teresa Martin-Gomez, e Estrella Martín-Mazuelos, c Teresa Pelaez, h © Javier Peman, f Antonio Rezusta, i Susana Rojo, i Rocio Tejero, g Diego Vicente Anza, k,l,m Jesús Viñuelas, i Maria Soledad Zapico, k Manuel Cuenca-Estrella, a on behalf of the FILPOP2 Project from GEMICOMED (SEIMC) and REIPI

		No. of isolates resistant to:			
Group	Total no. of isolates	AMB at >2 mg/liter	ITZ at >2 mg/liter	VCZ at >2 mg/liter	PCZ at >0.25 mg/liter
A. fumigatus	260	2	3	2	3
A. lentulus	6	3		4	
A. fumigatiaffinis	2	2			
Aspergillus felis	1			1	
A. niger	26		4		2
A. tubingensis	16		1		1
A. flavus	25	1			
A. alliaceus	10	10			
Aspergillus tamarii	1				
A. terreus	23	2	1	1	3
A. citrinoterreus	2				
A. nidulans	6				
A. quadrilineatus	5	1	1	1	1
Aspergillus delacroxii	1	1	1		
Aspergillus spinulosporus	1				
A. calidoustus	5	1	5	5	4
A. puniceus	1	1	1	1	1
A. sydowii	4				
Aspergillus chevalieri	1				
Total	396	24	17	15	15

Aspergillus Species and Antifungals Susceptibility in Clinical Setting in the North of Portugal: Cryptic Species and Emerging Azoles Resistance in *A. fumigatus*

Eugénia Pinto ^{1,2*}, Carolina Monteiro ¹, Marta Maia ¹, Miguel A. Faria ³, Virgínia Lopes ⁴, Catarina Lameiras ⁵ and Dolores Pinheiro ⁶

- 227 clinical isolates, mainly from the respiratory tract (92.1%)
- 86.7% Aspergillus fumigatus sensu stricto, 7.5% cryptic species
- 5 A. fumigatus sensu stricto pan-azole resistance
 - -1 TR46/Y121F/T289A, 2 TR34/L98H mutation
- Amongst cryptic species, 47%, 82% and 100% were resistant to voriconazole, posaconazole and isavuconazole, respectively.

Original Article

Prospective evaluation of azole resistance in Aspergillus fumigatus clinical isolates in France

F. Choukri^{1,2}, F. Botterel^{1,2}, E. Sitterlé^{1,2}, L. Bassinet³, F. Foulet^{1,2}, J. Guillot^{2,4}, J. M. Costa^{2,5}, N. Fauchet⁶ and E. Dannaoui^{2,7,*}

165 A. fumigatus isolates were recovered from 134 patients.

3 (1.8%) isolates recovered from three patients were found resistant

All had the TR ₃₄ /L98H mutation,

Polyphasic Identification and Susceptibility to Seven Antifungals of 102 Aspergillus Isolates Recovered from Immunocompromised Hosts in Greece⁷

Michael Arabatzis,¹* Manousos Kambouris,² Miltiades Kyprianou,¹ Aikat Maria Foustoukou,⁴ Maria Kanellopoulou,⁵ Lydia Kondyli,⁶ Georgia Chrysa Koutsia-Karouzou,⁸ Evangelia Lebessi,⁴ Anastasia Pang Efthimia Petinaki,⁹ Ageliki Stathi,³ Eleftheria Trikka-Graphakos, Erriketi Vartzioti,⁶ Aliki Vogiatzi,¹¹ Timoleon-Achilleas Vyzantiadis,¹² Loukia Zerva,¹³ and Aristea Velegraki¹

Greece

Aspergillus section (no. of isolates)	Aspergillus or Emericella species (no. of isolates) ^b	Antifungal agent ^c	MIC or MEC ^d (μg/ml) range	GM MIC or MEC ^d (μg/ml) (95% CI) ^e	
Fumigati (42)	A. fumigatiaffinis (3)	AMB	1–4	0.04	
0 ()	, , ,	ITZ	0.5	0.5	
		POS	0.064-0.5	0.2	
		VOR	0.25-1	0.5	
		AND	0.5 - 1	0.63	
		CAS	0.125 - 0.5	0.31	
		MCF	0.5		
	A. fumigatus (37)	AMB	0.016-16	0.28 (0.19-0.41)	
	21. juniguius (57)	ITZ	0.032-32	0.52 (0.35–0.77)	
		POS	0.032-32	0.34	
		VOR	0.064-1	0.28	
		AND	0.032-2	0.16	
		CAS	0.032-32	0.74	
		MCF	0.032-1	0.26 (0.20-0.35)	
	N. hiratsukae (2)	AMB	1	1	
	14. mraisanae (2)	ITZ	0.125-2	0.5	
		POS	0.25	0.25	
		VOR	0.032-1	0.18	
		AND	0.125-0.25	0.18	
		CAS	0.5	0.5	
		MCF	2	2	А

>13% (5/37)

Arabatzis et al AAC 2011

First detection of environmental azole resistant *A. fumigatus* in Greece

710 soil samples (10/2016-10/2017)

494 (72%) Aspergillus spp. 95 (19%) A. fumigatusSC 120 (24%) A. terreusSC 453 (92%) A. nigerSC 32 (7%) A. flavusSC

Azole-resistant

1/95 (1%) A. fumigatus sensu stricto

organically grown raisin grapes lubricated with compost

ITRA>8 mg/l VOR>8 mg/l, POSA=1 mg/l ISAV>8 mg/l

TR₄₆/Y121F/T289A

resistance mechanism

Azole resistant A. fumigatus in cystic fribrosis

Turkey

- 31 isolates of *A. fumigatus*,14 different genotypes, 6 CF patients.
- 1 pan-resistant genotypes
- No mutations were detected in the Cyp51A gene

Gungur O, Mycopathologia 2018

Portugal

- 59 isolates of A. fumigatus collected from cystic fibrosis (CF) patients receiving azole antifungal therapy
- No resistant isolates

Amorim A, Int J Antimicrob Agents 2010

Italy

- 423 isolates (220 CF patients) in 2 centers
- 0% and 8.2% resistant isolates were found in the two centers
- 7 isolates with TR₃₄/L98H

Prigitano A, J Cyst Fibros. 2017

France

- 6.5% (231/355) isolates and 6.8% (6/88) patients with azole-resistance
- 50% TR34/L98H, 50% without cyp51A mutations

Azole-resistant A. terreus in Europe

Take-home messages

- ✓ Azole resistance in A. fumigatus was detected in most European countries both in environmental and clinical isolates
 - less common in other species and mainly in *A. flavus*.
 - major problem in some centers in *A. fumigatus* cryptic species
- ✓ Overall prevalence of azole resistance was 3.2%
 - higher prevalence (30%) observed in some centers in north Europe
- ✓ Azole resistance in Mediterranean area is low (<5%)</p>
- ▼ TR34/L98H was the predominant mechanism of resistance (~50%) in patients with invasive aspergillosis
 - most common in Mediterranean area
- ✓ Single point mutations at G54, G138 and M220 codons are the predominant mechanisms of resistance in centers with chronic aspergillosis patients
 - 15-50% with no cyp51A mutation
- ✓ Azole resistance is associated with worsened outcome
 - A rapid and convenient screening method for resistance
 - Avoid azole monotherapy in centers with high (>10%) prevalence

University General Hospital Attikon, Athens, Greece

Azole resistance prevalence in *A. fumigatus*

Continent/Country	% Resistance	Source of the Isolates	References					
Europe								
Belgium	5.7	С	[76]					
France	0.85 - 10.6	С	[30,48,50]					
Germany	1.1–12	C and E	[32,47,60]					
Netherlands	2.1-20	C and E	[20,53,67,74]					
Poland	2.25	С	[69]					
Spain	1.8	С	[63]					
Turkey	10.2	С	[71]					
United Kingdom	6.6–28	С	[17,33]					
Other continents								
Asia *	1.9-11.1	C and E	[55,77,78,80–86,121]					
Africa (Tanzania)	13.9	E	[90]					
America (USA)	0.6-11.8	С	[58,122]					
Oceania (Australia)	2.6	С	[59]					
International surveillance studies								
America-Asia-Australia-Europe	1.4-5.8	C and E	[52,70,123,124]					

C = clinical strains, E = environmental strains; * including China, India, Iran, Japan, Kuwait and Pakistan.

Distribution of azole resistance mechanisms in *A. fumigatus*

