Diagnosis by molecular methods

Joseph Papaparaskevas, MD, PhD, Associate Professor Dpt. of Microbiology, Medical School National and Kapodistrian University of Athens ipapapar@med.uoa.gr

Disclosures and conflicts of interest

- Research Grants from Wyeth-Pfizer, Merck & Co, Astra-Zeneca Pharmaceuticals, bioMerieux and LabSupplies, through the Special Account for Research Grants of the National and Kapodistrian University of Athens
- Speaker Honoraria from Wyeth-Pfizer and Astra-Zeneca Pharmaceuticals, through the Special Account for Research Grants of the National and Kapodistrian University of Athens

Introduction

- Procedures and technical difficulties of molecular microbiological diagnosis of bone and joint infections
- State of the art techniques

Microbiological diagnosis

Microscopy

Culture

Serological detection of antibodies and antigens

Molecular detection of DNA

European Journal of Nuclear Medicine and Molecular Imaging (2019) 46:957–970 https://doi.org/10.1007/s00259-019-4262-x

GUIDELINES

Consensus document for the diagnosis of peripheral bone infection in adults: a joint paper by the EANM, EBJIS, and ESR (with ESCMID endorsement)

Andor W. J. M. Glaudemans¹ · Paul C. Jutte² · Maria Adriana Cataldo³ · Victor Cassar-Pullicino⁴ · Olivier Gheysens⁵ · Olivier Borens⁶ · Andrej Trampuz⁷ · Klaus Wörtler⁸ · Nicola Petrosillo³ · Heinz Winkler⁹ · Alberto Signore¹⁰ · Luca Maria Sconfienza^{11,12}

- $\sqrt{1}$ European Bone and Joint Infection Society
- $\sqrt{10}$ European Society of Clinical Microbiology and Infectious Diseases
- \checkmark European Society of Radiology
- \checkmark European Association of Nuclear Medicine

- \checkmark The gold standard for the correct identification of the causative microorganism of PBI is represented by culture of infected bone.
- \checkmark Bone biopsy samples should always be collected from a zone in which the bone structure is visibly inflamed.
- \checkmark A minimum of three tissue samples should be collected. The more samples that are withdrawn, the less chance of an incorrect assessment due to contamination is reported.
- $\sqrt{}$ Collected pieces should be divided for bacteriology and histology.
- ✓ The samples should be sent for aerobic and anaerobic cultures; cultures for mycobacteria and fungi should be performed in patients with clinical and epidemiological features supporting a suspicion for these etiologies.
- ✓ Samples collected directly from the skin should be avoided since these biopsies are often contaminated with skin microbes, leading to false-positive results.

European Journal of Nuclear Medicine and Molecular Imaging (2019) 46:957–970 https://doi.org/10.1007/s00259-019-4262-x

GUIDELINES

Consensus document for the diagnosis of peripheral bone infection in adults: a joint paper by the EANM, EBJIS, and ESR (with ESCMID endorsement)

Andor W. J. M. Glaudemans¹ · Paul C. Jutte² · Maria Adriana Cataldo³ · Victor Cassar-Pullicino⁴ · Olivier Gheysens⁵ · Olivier Borens⁶ · Andrej Trampuz⁷ · Klaus Wörtler⁸ · Nicola Petrosillo³ · Heinz Winkler⁹ · Alberto Signore¹⁰ · Luca Maria Sconfienza^{11,12}

Eur J Nud Med Mol Imaging (2019) 46:957-970

infected bone. Prior to collecting microbiological samples, any antibiotic regimen should be discontinued for 2 weeks, provided the progression of the disease allows this.

Biopsies should be taken under image guidance to provide representative samples. Boro is easily visualized with conventional X-ray and fluoroscopy. However, hone biopsies are generally conducted using CT guidance, which has the advantage of providing higher contrast resolution and better visualization of surrounding soft tissues, thus allowing for bater evaluation of the exact location of the lesion and position of the needle. MRI guidance is mely used for obtaining a boro biopsy. Because of the electromagnetic radiation, MRI-guidade bene biopsy requires a special needle made of non-ferromagnetic stainless steel. Other disadvantages of MRI are lenger proceduat line and higher costs. MRI guidance should only be used in very selected cases like needlaritic ones [14].

Bone biopsy samples should always be collected from a zone in which the bone structure is visibly inflamed. Tissue neur visible bone or sequestin is informative. Collected pieces should be divided into two pieces for bacteriology and histology.

A minimum of three tisue samples should be collected, the more samples that are withdrawn, the less chance of an incorrect assessment due to contamination is reported. Whenever bone biopsiss are done, the samples should be sent for arobic and anaerobic cultures, cultures for mycobacteria and fingi should be performed in patients with clinical and epidemiological fattures supporting a suspicion for these etologies. Samples collected directly from the skin should be avoided since these biopsics are often contaminated with skin microbas, leading to false-positive results. Histopathological analysis is essential for confirming or excluding the diagnosis of infection. Visualization of granulatomatous lesions with positive Zibl-Needsen staining may allow the diagnosis mycobacterial infection (e.g., *Mycobacterian turbureulusioti*).

Because bone biopsy is an invasive diagnostic method, several studies examined the diagnostic values of sinus tract cultures. However, these tract cultures are often contaminated with skin microbes, leading to a higher number of false-positive results. Superficial swab

cultures and bone biopsy, and should not be used. New molecular methods can further improve the microbiological diagnacic [15]

Radiological and nuclear medicine imaging methods and limitations

Several commonly used radiological and nuclear-medicine imaging methods are available (see Tables 1 and 2). An extensive description on the correct use of these techniques is provided in Appendix 2 [16–24]. The concerns on the use of

ionizing radiation is described in Appendix 3 (https://ec. europa.eu/energy/sites/ener/files/documents/CELEX-32013L0059-EN-TXT.pdf, [25]).

Consensus statements

All performed PICOs for the statements and the papers finally included for the level of evidence are mentioned in Appendix 4.

 Patients presenting with clinical and radiological signs of peripheral bone infection or a positive probe-tobone test may require further diagnostic procedures.

Level of evidence: 5

infection

In case of chinical and moliological suspicion of peripheral bore infection, further diagnostic testing can be indicated to reveal severity and extent of the infection a with acute peripheral bone infection can present with local pain, swelling, crythema, and warms at the size of infection, and systemic symptoms such as fever and general illness. If a fistula is present, a probe to the bore test can be performed, in diabeti foot, this indicative of bone infection, however, there into interature supporting that statement in PBI. In general in the acute phase with clear clinical signs, advanced maging is often not necessary.

 Fistula direct to the bone and purplent discharge ar evidence of bone infection.

Level of evidence: 5 There are no article that provide evidence for this statement. It is based on common medical priority is bacteria that normally are potent as part of skirlefons superficially spread and coloniar the exposed bace thereby causing local

CRP, ESR, and WBC counts should always be performed in patients suspected of having peripheral bony infection for diagnostic purposes. Level of evidence: 4

In patients with PBI, raised ESR and CRP can be present, even if inconsistendy, and can orientate varuus a diagnosis of infaction. White blood cell counts are more rarely increased. In patients with configuous pedal ostcomyclitis, the positive predictive value of ESR in diagnosing ostcomyclitis in patients without diabetes was 78%, and in those with diabetes was 81%, with a negative predictive value S and 31%. molecular methods can further improve the microbiological diagnosis [15].

In a consensus guidelines paper of 14 pages and 7,362 words, signed by four international societies, the phrase "molecular methods" is only stated once and in a very ambiguous way

New

Issues with molecular microbiological diagnosis of bone infections

- The clinical specimen the difficulty issue
- The most common pathogens the easiness issue
- The PCR target(s) the multiplex issue

- ♦ Issue No 1: the clinical specimen
 - ✓ Bone tissue → DNA extraction is extremely difficult and it requires harsh treatment of the bone with metallic beads, which can also easily destroy bacterial cells
 - $\sqrt{}$ Preferable specimen the surrounding soft tissues, but not always infected
 - \checkmark Prosthetic devises (metal) \rightarrow no DNA extraction is possible at all, only sampling of the biofilm surrounding the metallic devise

Issue No 2: The most common pathogens are easy to culture

Prosthetic-joint infection Coagulase-negative; staphylococci; Staph aureus; polymicrobial Streptococcus spp; gram-negative aerobic bacilli Septic arthritis Staph aureus: Streptococcus spp; E. coli: Neisseria gonorrhoeae, Post-traumatic infection Staph aureus; polymicrobial gram-negative aerobic bacilli; anaerobes

Vertebral osteomyelitis Staph aureus; gram-negative aerobic bacilli; Streptococcus spp; Mycobacterium tuberculosis

Diabetic foot infection Staph aureus; Streptococcus spp; Enterococcus spp; coagulase-negative staphylococci; gram-negative aerobic bacilli; anaerobes

- Issue No 3: the number of the PCR targets
 - ✓ Until recently, PCR was performed for a single pathogens at any one time (single-plex), or, in the best case scenario, for a limited number of pathogens/targets (multi-plex) at any one time
 - \checkmark The number of targets detected at the same time depends on the nucleotide sequence of each target
 - √ Thus, molecular diagnosis is species-specific, whereas conventional diagnosis is syndrome-specific

Common pathogens and DNA targets

Streptococcus pyogenes Staphylococcus aureus

Klebsiella pneumoniae Pseudomonas aeruginosa

Mycobacterium tuberculosis

*spy1*258 (transcription regulator) , *spe*B (toxin) *nuc* (nuclease), *mecA* (MRSA resistance)

rmpA (regulator of polysaccharide synthesis)
relBE, higBA, parDE (toxin-antitoxin system)

IS610 (repeated insertion sequence)

Syndromic Panel-Based Testing in Clinical Microbiology

Poornima Ramanan,^a Alexandra L. Bryson,^a Matthew J. Binnicker,^a Bobbi S. Pritt,^{a,b} Robin Patel^{a,b}

^aDivision of Clinical Microbiology, Mayo Clinic, Rochester, Minnesota, USA ^bDivision of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA

Curetis Unyvero

GenMark ePlex

TABLE 1 FDA-approved/cleared panel-based molecular assays for detection of select microorganisms and select resistance genes in positive blood culture bottles

		Verigene		
Parameter	FilmArray BCID	Gram-positive blood culture	Gram-negativ blood culture	
Total no. of targets	27	15	14	

Ability to detect pathogen	TABLE 3 FDA-approved/cleared mult	tiplex respiratory pan	nels ^a							
Gram-positive bacteria				x-TAG	x-TAG RVP					
Staphylococcus species	Parameter	FilmArray	Verigene	RVP	Fast	NxTAG-RPP	eSensor RVP	ePlex		
Staphylococcus aureus	Analysis platform	FilmArray system or	r Verigene	Luminex	Luminex	Luminex	eSensor	ePlex		
Staphylococcus epidermidis		FilmArray Torch	system	100/200	100/200	Magpix		system		
Staphylococcus luadunensis								ŗ		
Streptococcus species	No. of targets	20	16	12	8	20	14	17		
Streptococcus agalactiae	Ability to detect pathogen									
Streptococcus pyogenes	Viruses									
Streptococcus progenes	Adenovirus	1	1	TABLE 4 FD/	A-approved/cl	eared multiple	x gastrointestina	al panels ^a		
Streptococcus pricumonide				Parameter			Verigene	EP	Luminex GPP	BioFire GIP
Enterococcus species				Analysis platf	form		Verigene s	system	Magpix or Luminex 100/20	0 FilmArray system or FilmA
Enterococcus species	Coronavirus								system	Torch
Enterococcus faecium	Coronavirus HKU1						6. I. C			
	Coronavirus NL63			Acceptable sp	pecimen type		Stool in Ca	ary-Blair	Fresh stool or stool in Cary	-Blair Stool in Cary-Blair medium
Listeria species	Coronavirus OC43						medium	1	medium	
Listeria monocytogenes	Human bocavirus	•		No. of targets	s		9		14	22
Gram-negative bacteria	Human metapneumovirus	1	1	inor or target.	-		-			Ro Ro
Klebsiella oxytoca	Influenza A virus	1	1	Ability to det	tect pathogen					
Klebsiella pneumoniae	Subtype H1	1	1	Bacteria						
Serratia marcescens	Subtype H3	1	1	Campylo	bacter species		~		1	1
Proteus species	Subtype 2009 H1N1	1		Salmone	lla species		~			1
Acinetobacter species	Influenza B virus	1	~	Shigella	species/enteroi	nvasive E. coli ^b	1		1	
Acinetobacter species	Parainfluenza virus 1	1	~	Vibrio sp	Decles		<i>✓</i>			
Acmetobacter baumannin	Parainfluenza virus 2		~	Vibrio ch	optorocolitica		/		<i>y</i>	
Haemophilus influenzae	Parainfluenza virus 3			Escharich	enterocolitica		~		1	
Neisseria meningitis	Perpiratory syncortial virus		~	Enteroto	vigenic E. coli				1	1
Pseudomonas aeruginosa	Respiratory syncytial virus A	v	1	Enteropa	athogenic E. co.	li			•	
Enterobacteriaceae	Respiratory syncytial virus R		1	Enteroag	gregative E. co	li				1
Escherichia coli	Rhinovirus/enterovirus	1	1	Plesiomo	onas shigelloides					1
Enterobacter species	Bacteria			Shiga to:	xin-producing	E. coli (stx ₁ -stx ₂)	√c		1	\checkmark
Enterobacter cloacae complex	Chlamydophila pneumoniae	✓		Clostridiu	um difficile (toxi	n A/B)			1	1
Citrobacter species	Mycoplasma pneumoniae	1		Viruses	<i>cu cu</i>					
Vegete	Bordetella pertussis	<i>✓</i>	~	Noroviru	is GI/GII					
reasts	Bordetella parapertussis-Bordetella		~	Rotavirus	s A		~		<i>y</i>	
Canalaa albicans	bronchiseptica			Adenovi	rus 40/41				1	
Candida glabrata	Bordetella holmesii		~	Sapoviru	103 40/41				•	
Candida krusei	Time to result (b)	~1	~2_2	Parasites			TABLE	6 Organisms	s targeted by the Film <i>l</i>	Array Meningitis/Encephalitis
Candida parapsilosis			-2-3	Cryptosp	oridium species		Denner			1
Candida tropicalis	^a The acceptable specimen type for all panel	ls is a nasopharyngeal sw	ab. RVP, respir	Entamoe	eba histolytica		Paramet	ter	F	ImArray Meningitis/Encephali
		_	_	Giardia la	lamblia .		Pathoge	n detected		
bility to detect presence of resistance gene				Cyclospo	ora cayetanensis		Viruse	S	C	ytomegalovirus, enterovirus, he
mecA				No. of sample	es (throughput					herpes simplex virus 2, humar
vanA				No. or sample	es (throughput					human parechovirus varicella
vanA				Time to result	lt (h)		Pacto	dia	E	schorichia coli K1 Hasmonhilus
	v v			aED antenia and	th		Dacter	Id	E:	cherichia con Ki, Haemophilas
DIGKPC	v	~		^b The Verigene	FP and Luminex	GPP do not speci	fically			monocytogenes, Neisseria meni
bla _{NDM}				The Verigene	EP has separate t	argets for stx_1 an	d stx ₂ .			Streptococcus agalactiae, Strep
bla _{OXA}		V					Fungi		C	ryptococcus neoformans-C. gatti
bla _{vim}		✓								
bla _{IMP}		✓					Analysis	platform	Fi	ImArray system or FilmArray T
bla _{ctx-M}		1					Accepta	ble specimer	type C	SE
sin m							Ticcepta	ore specifier	C C	-
							1100.0			

FilmArray Meningitis/Encephalitis panel

Cytomegalovirus, enterovirus, herpes simplex virus 1, herpes simplex virus 2, human herpesvirus 6, human parechovirus, varicella-zoster virus Escherichia coli K1, Haemophilus influenzae, Listeria monocytogenes, Neisseria meningitidis, Streptococcus agalactiae, Streptococcus pneumoniae

Research Article

For reprint orders, please contact: reprints@futuremedicine.com

Catherine Dunyach-Remy^{±,1}, Charlotte Carrere^{±,1}, Hélène Marchandin², Sophie Schuldiner³, Anne-Marie Guedj⁴, Nicolas Cellier⁵, Axelle Cadière⁶, Catherine Lechiche⁷, Albert Sotto⁸ & Jean-Philippe Lavigne^{*,1}

¹U1047, INSERM, University Montpellier, Department of Microbiology, University Hospital Nimes, Nimes, France

²HydroSciences Montpellier, CNRS, IRD, University Montpellier, Department of Microbiology, University Hospital Nimes, Nimes, France

³Department of Diabetology, University Hospital Nîmes, Le Grau du Roi, France

⁴Department of Diabetology, University Hospital Nimes, Nîmes, France ⁵Department of Orthopedic Surgery, University Hospital Nimes, Nîmes, France

⁶Chrome Unit, EA7352, University Nîmes, Nîmes, France

⁷Departement of Infectious Diseases, University Hospital Nimes, Nimes, France

⁸U1047, INSERM, Université Montpellier, Departement of Infectious Diseases, University Hospital Nimes, Nimes, France *Author for correspondence: Tel.: +33 466 683 202; Fax: +33 466 684 254; jean.philippe.lavigne@chu-nimes.fr *Authors contributed equally

PATHOGEN
Staphylococcus aureus
Coagulase negative staphylococci
Streptococcus agalactiae
Streptococcus pyogenes ²
Enterococcus faecalis
Enterococcus spp. ³
Granulicatella adiacens
Abiotrophia defectiva
Corynebacterium spp. 4

RESISTANCE AGAINST
Oxacillin/ Methicillin
Oxacillin/ Methicillin
Carbapenem
Macrolide
Macrolide
Vancomycin
Vancomycin
Rifampin (S.aureus)

GROUP	PATHOGEN		
	Escherichia coli		
	Enterobacter cloacae complex		
Fatavahaataviaaaaa	Enterobacter aerogenes		
Enteropacteriaceae	Proteus spp.5		
	Klebsiella oxytoca		
	Klebsiella pneumoniae ⁶		
Ning formanting boots in	Acinetobacter baumannii complex		
Non-termenting bacteria	Pseudomonas aeruginosa		
	Propionibacterium acnes		
	Propionibacterium avidum/granulosum		
Anaeropic bacteria	Finegoldia magna		
	Bacteroides fragilis group 7		
Firmei	Candida parapsilosis		
Fungi	Candida albicans		

RESISTANCES	RESISTANCE AGAINST
ctx-M	3rd generation Cephalosporins
vim	Carbapenem
imp	Carbapenem
kpc	Carbapenem
ndm	Carbapenem
aacA4	Aminoglycoside
gyrA	Quinolones
оха-23	Carbapenem
oxa-24	Carbapenem
oxa-48	Carbapenem
oxa-58	Carbapenem

Analyte	Detection Limit (Pathogens/mL)	Positivity Rate at 1/10 of the Detection Limit
Universal Bacteria	10 ⁵	85%
Staphylococcus aureus	10 ⁵	58%
Coagulase negative Staphylococci	10 ⁴	Not tested
Streptococcus spp.	10 ⁵	52%
Streptococcus pneumoniae	10 ⁴	Not tested
Streptococcus agalactiae	10 ⁴	Not tested
Streptococcus pyogenes/dysgalactiae	10 ⁴	Not tested
Granulicatella adiacens	10 ⁵	0%

Analyte	Detection Limit (Pathogens/mL)	Positivity Rate at 1/10 of the Detection Limit
Abiotrophia defectiva	10 ⁵	50%
Enterococcus spp.	10 ⁵	20%
Enterococcus faecalis	10 ⁶	63%
Corynebacterium spp.	10 ⁵	38%
Escherichia coli	10 ⁴	Not tested
Enterobacter cloacae complex	10 ⁵	25%
Enterobacter aerogenes	10 ⁵	0%
Proteus spp.	10 ⁴	Not tested
Klebsiella pneumoniae	10 ⁵	Not tested
Klebsiella oxytoca	10 ⁴	Not tested
Klebsiella variicola	10 ⁴	Not tested
Citrobacter freundii/koseri	10 ⁵	50%
Pseudomonas aeruginosa	10 ⁴	Not tested
Acinetobacter baumannii complex	10 ⁴	Not tested
Propionibacterium acnes	10 ⁵	33%
Finegoldia magna	10 ⁶	22%
Bacteroides fragilis group	10 ⁴	Not tested
Candida spp.	10 ⁵	68%
Candida albicans	10 ⁵	47%
Candida tropicalis	10 ⁸	0%
Candida glabrata	10 ⁵	25%
Issatchenkia orientalis (C. krusei)	10 ⁶	0%

Evaluation

- Sensitivity: 50.1% up to 100.0%
- Specificity: 91.7% up to 100.0%
- The sensitivity differences (and hence the negative predictive value differences) are due to:
 - $\sqrt{}$ The bacterial load at the site of the infection
 - $\sqrt{}$ The clinical specimen selection
 - $\sqrt{}$ The DNA target copy number per bacterial cell
- The specificity differences are due to the different CoNS targets

Strategies for Next Generation Sequencing

1. Whole Genome Sequencing (WGS)

100+ Gb sequencing

2. Whole exome sequencing (WES)

Capture all (200,00) exons & sequence them Less sequencing & analysis (38 Mbs)

3. Target sequencing

Capture regions of interest & sequence them

4. Transcriptone sequencing (RNAseq)

What is being actively transcribed in the cell of interest 20,000 protein coding genes

Targeted NGS

- 1. Selection of DNA targets of clinical interest
- 2. Sequencing of the DNA sections with or without prior amplification
- 3. Evaluation of the obtained information and completion of the diagnostic process

NGS information workflow

NGS workflow

http://www.thermofisher.com

Advantages

- $\sqrt{}$ Targeted sequencing of DNA regions of clinical importance
- $\sqrt{1}$ Time management \rightarrow results within the working hours
- $\sqrt{1}$ Low detection limit (up to 1 copy per ml)

Disadvantages

- $\sqrt{}$ Losing of the whole image (sequencing of the whole genome)
- $\sqrt{}$ No identification of new DNA regions of potential clinical significance

Main companies and platforms

Table 1

Properties of current NGS platforms.

Company	Equipment	Output/run (Gb)	Maximum read length (bp)	Reads (x10 ⁶)	Running time
Illumina	MiniSeq	0.6–7.5	2 × 150	25	4-24 h
Illumina	Miseq	0.3–15	2×300	25	5–55 h
Illumina	NextSeq	20-120	2×150	130/400	12-30 h
Illumina	HiSea 3000	125-700	2 × 150	2500	<1–3.5 davs
ThermoFisher	Ion PGM TM	0.03-2	200-400	0.4–5.5	2–7 h
ThermoFisher	Ion 5S TM	0.6–15	200-400	3–80	2.5–4 h
ThermoFisher	Ion 5S TM XL	0.6–15	200-400	3–80	<24 h
Oxford Nanopore	MinION	21-42	230,000–300,000	2.2-4.4	1 min–48 h
Pacific Biosciences ^a	Sequel	0.75-1.25	>20,000	370,000	30 min-6 h
Pacific Biosciences ^a	RSII	0.5–1	>20,000	55,000	30 min-4 h

^a The Pacific Biosciences data are per smart cell; both the Sequel and the RSII can run 1–16 smart cells in one run.

- Platforms for smaller fragment sequencing
- Faster turn-around time

Deurenberget al, JB 2017

Table 2

Software packages frequently used for NGS data analyses in our laboratory.

Application	Software	Link	Note
Annotation	Prokka RAST	www.vicbioinformatics.com http://rast.nmpdr.org	
Assembly	BioNumerics CLC Genomic Workbench SeqSphere SPAdes Velvet	www.applied-maths.com www.clcbio.com www.ridom.de http://bioinf.spbau.ru/spades www.ebi.ac.uk/~zerbino/velvet	Commercial software Commercial software Commercial software Unix-based Unix-based
Data quality check	BaseSpace BioNumerics CLC Genomic Workbench FastQC	https://basespace.illumina.com www.applied-maths.com www.clcbio.com www.bioinformatics.babraham.ac.uk	Commercial software Commercial software Commercial software
Identification	K-merFinder NCBI BLAST	www.genomicepidemiology.org www.ncbi.nlm.nih.gov/blast	
Metagenomics Phylogeny	MEGAN FastTree RAxML SeqSphere SNPTree	http://ab.inf.uni-tuebingen.de/software/malt www.microbesonline.org/fasttree http://sco.h-its.org/exelixis/software.html www.ridom.de www.genomicepidemiology.org	Commercial software
Resistance	ARDB CARD ResFinder	https://ardb.cbcb.umd.edu https://card.mcmaster.ca www.genomicepidemiology.org	
SNP calling	BioNumerics CLC Genomic Workbench Samtools SeqSphere	www.applied-maths.com www.clcbio.com www.htslib.org www.ridom.de	Commercial software Commercial software Commercial software
Typing (wgMLST)	BIGSdb BioNumerics CLC Genomic Workbench EnteroBase SeqSpere	http://bigsdb.readthedocs.io www.applied-maths.com www.clcbio.com https://enterobase.warwick.ac.uk www.ridom.de	Commercial software Commercial software Commercial software
Virulence	VFDB VirulenceFinder	www.mgc.ac.cn/VFs www.genomicepidemiology.org	
Visualisation & comparative study	ACT Artemis BRIG ClustalW DNA plotter WebACT	www.sanger.ac.uk/science/tools www.sanger.ac.uk/science/tools https://sourceforge.net/projects/brig/ www.genome.jp/tools/clustalw www.sanger.ac.uk/science/tools www.webact.org	Deurenberget al, JB 2017

Main workflow steps

- $\sqrt{1}$ Primer design and protocol optimization
- $\sqrt{10}$ Up to <u>6.144 primer pairs</u> can be used at the same time
- \checkmark Clinical specimen \rightarrow DNA extraction \rightarrow amplification \rightarrow sequencing
- \checkmark Evaluation and translation of the information in large data bases (cloud computing)
- $\sqrt{}$ Major advantages (1) Low turnaround time, (2) fast information processing, (3) low detection limit

314 Ion 314[°] Chip 1 million wells 400–550 thousand reads for 200-base sequencing

316 Ion 316[™] Chip 6 million wells 2–3 million reads for 200-base sequencing

318 Ion 318" Chip 11 million wells 4-5.5 million reads for 200-base sequencing

Sequencing is performed in small semiconductors Up to 1,2 billion microwells allow sequencing of up to 496.000.000 DNA fragments

Semiconductor Sequencing Chips

Chip Types ¹	314	316	318	IP1/IP2/IP3*	
# Wells per Chip	1,262,528	6,348,216	11,302,473	165 M/660M/1.2B	
Volume, µL	7	30	30	55	
# of Reads ¹	295,736	1,592,020	4,580,123	124-496,000,000	
Yield/Q20, bases	24.6/ 21.9 Mb	146.7/ 122.5 Mb	600/ 500 Mb	10 / 60 / 480 Gb	
Mean Read ¹ , bp	83	92	129	Up to 300	
Longest Reads ¹	396	307	386	640	
Run Time ¹ , Hrs	2.4	3.1	4.5	~4	
Processing, Hrs1	0.3	2.0	4.5	Up to 8 hrs	
Analysis ² , Hrs	12	18	30	Up to 1 day	
Template Molecules	2.5 x 10 ⁷	5 x 10 ⁷	5 x 10 ⁷	2.5 x 10 ⁷	
Cost per Run	\$400	\$500	\$800	\$1,000	

http://www.thermofisher.com

Analysis and translation

http://www.thermofisher.com

147

Copyright © 2018 by The Journal of Bone and Joint Surgery, Incorporated

Diagnosis of Periprosthetic Joint Infection: The Potential of Next-Generation Sequencing

Majd Tarabichi, MD, Noam Shohat, MD, Karan Goswami, MD, Abtin Alvand, MD, PhD, FRCS, Randi Silibovsky, MD, Katherine Belden, MD, and Javad Parvizi, MD, FRCS

Investigation performed at The Rothman Institute at Thomas Jefferson University, Philadelphia, Pennsylvania

I. Bone Joint Infect. 2019, Vol. 4

IVYSPRING INTERNATIONAL PUBLISHER

Journal of Bone and Joint Infection 2019; 4(1): 50-55. doi: 10.7150/jbji.30615

Case Report

Metagenomic next-generation sequencing contribution in identifying prosthetic joint infection due to Parvimonas micra: a case report

Zida Huang¹, Chongjing Zhang¹, Wenbo Li¹, Xinyu Fang¹, Qijin Wang¹, Li Xing³, Yingzhen Li³, Xifang Nie³, Bin Yang², Wenming Zhang¹[∞]

AMERICAN SOCIETY FOR MICROBIOLOGY Clinical Microbiology®

Direct Detection and Identification of Prosthetic Joint Infection Pathogens in Synovial Fluid by Metagenomic Shotgun Sequencing

Morgan I. Ivy,^a Matthew J. Thoendel,^b ⁽¹⁾ Patricio R. Jeraldo,^c Kerryl E. Greenwood-Quaintance,^a Arlen D. Hanssen,^d Matthew P. Abdel,^d Nicholas Chia,^c Janet Z. Yao,^c Aaron J. Tande,^b Jayawant N. Mandrekar,^e ⁽²⁾ Robin Patel^{a,b}

SCIENTIFIC REPORTS

OPEN Targeted next-generation sequencing of the 16S-23S rRNA region for culture-independent bacterial identification - increased discrimination of closely related species

> Artur J. Sabat^{1,2}, Evert van Zantan², Viktoria Akkarboom¹, Guido Wisselink², Kees van Slochteren², Richard F. de Boer², Ron Hendrix², Alexander W. Friedrich¹, John W. A. Rossen¹ & Anna M. D. (Mirjam) Kooistar-Smid^{1,2}

Applications of NGS in

bone and implant infections

50

Received: 6 March 2017

Accepted: 26 April 2017 Published online: 13 June 2017 www.nature.com/scientificrepo

Next milestone: incorporation of the technique in the Microbiology Lab routine

Next milestone: incorporation of the technique in the Microbiology Lab routine

But the chapters still open to discussion are more than the ones that are closed

- √ Well into the 21st century, the Gold Standard for diagnosis of bone and joint infections is still based on a technique established during the late 19th century (with major optimizations of course)
- $\sqrt{}$ Nevertheless, new techniques, already used in other disciplines, "slowly" find their way to orthopedic infection diagnosis
- \checkmark Syndromic molecular diagnostic approach seems to be the most promising tool for the time being
- $\sqrt{}$ NGS will require additional time, but eventually will replace all other molecular techniques

Thank you for your attention