Disclosures

- Ortho-SUV Ltd. (employee)
- Springer-Verlag (honorarium)
- I will be discussing products/devices that are not FDA approved

St.Petersburg

St.Petersburg

- •Founded by Peter the Great in 1703
- •1712-1918 the capital of Russia
- •Population 5 300 000 (2017)
- •SPb is important economical, scientific and cultural center of Russia
- •Historical center of SPb was included into the list of UNESCO World Heritage Sites
- •700 big and 20.000 smaller are SPb industrial basis

St.Petersburg is beautiful in winter time as well...

R.R. Vreden Russian Research Institute of Traumatology and Orthopedics

About 1200 employees 210 orthopedic surgeons 112 scientific employees

13 professors 101 MD, PhD

AO Principles Based Long Bone Defect Classification (LBDC) Main options for long-bone defects treatment

Leonid Solomin
Vreden RRITO
SPb State University

http://rniito.org

http://spbu.ru

Defects we meet often

Defect types that are

"A classification is useful only if it considers the severity of the bone lesion and serves as a basis for treatment and for evaluation of the results."

Maurice E Müller, 1988

Shevtsov V.I. et al., 1996

Shevtsov V.I. et al., 1996

Clatworthy M. et al., 2003

Only for arthroplasty

Fig. 5

Nikolaos G Lasanianos et al., 2009

The Authors' Preferred Management of Segmental Bone Defects Based on Size			
Management Method	Size of Defect	Advantages	Disadvantages
Autologous bone graft	<5 cm	One-stage reconstruction; no disease transmission; no immunologic rejection; low cost; standard of care with osteoinductive, osteoconductive, and osteogenic properties	Donor site morbidity, limited volume available, no structural capability
Allograft bone	Unknown	No donor site morbidity, "limitless" volume, structural properties with cortical allograft, volume expander	Limited graft incorporation/ remodeling, potential disease transmission, no osteoinductive or osteogenic properties, cost/expense
Demineralized bone matrix	Unproven for segmental defects	Osteoinductive properties, no donor site morbidity, volume expander	No structural property, no evidence for segmental bone defect reconstruction, cost/expense
Bone morphogenetic proteins	Unproven for segmental defects	Osteoinductive, bone graft enhancer	Interferes with Masquelet technique no structural capability, cost/expense
Induced membrane technique (Masquelet technique)	>10 cm (5–24 cm)	RIA graft harvest can provide adequate volume, internal or external fixation can be used, reconstruction time is independent of length of defect, low cost	Donor site morbidity, two-stage technique, long reconstructive period (average, 9 mo), described using external fixation, ratio of allograft to autograft cannot excee 3:1 with theoretic defect limits
Distraction osteogenesis (Ilizarov technique)	5–10 cm (average) ^a	No donor site morbidity, no restrictions on defect length, reliable technique, can be used with a compromised soft-tissue envelope (STSG or free tissue flap), can decrease reconstructive time with multiple osteotomies and transport segments	Long reconstructive period, reconstructive period is length- dependent, high rate of complications with prolonged external fixation, cost of ring or spatial external fixation frame
Acute shortening	1–3 cm	Simplest and fastest method, allows early primary closure of soft-tissue wounds, well tolerated in upper extremity, well tolerated in single bone extremity segment, no donor site morbidity, low cost	Limb dysfunction especially in lower extremities, defect length is limited may require secondary lengthenin procedures to correct limb-length discrepancy
Vascularized fibular graft transfer	10–20 cm	Substantially shorter reconstruction time for large defect compared with Masquelet and Ilizarov techniques, fibular hypertrophy to support weight-bearing, low cost	Donor site morbidity, requires specialized microsurgical capability, high rate of regenerated bone fracture, typically limited to tibial defects
Amputation	NA	Shorter treatment time than limb salvage/segmental defect reconstruction; good functional outcomes in young, adult trauma patient with modern prosthesis	Permanent limb loss, high rate of secondary procedures for complications, lifetime prosthetic cost

 ${\sf NA}={\sf not}$ applicable, ${\sf RIA}={\sf reamer}$ -irrigator-aspirator, ${\sf STSG}={\sf split}$ thickness skin graft ${\sf a}$ Theoretically, there is no limit in terms of size.

Cyril Mauffrey et al., 2015

- for which types of defects these classifications are?

- for which types of defects these classifications are?

- for segmental!

limited

shortening

shortening

shortening

shortening

contact with shortening

complete articular

Goals

- to know the basic terminology
- to know the principle of long bone defects classification in accordance with the AO principles
- to be able to classify the defects of long bones
- to be able to practically use the classification

Definition

Bone defect

characterized by a loss of bone tissue as a result of injury or disease modifying the anatomical structure, physiology and function of bone

A.Barabash, 1995

Definition

Bone defect

characterized by a loss of bone tissue as a result of injury or disease modifying the anatomical structure, physiology and function of bone

A.Barabash, 1995

Definitions

- epyphiseal
- metaphyseal
- diaphyseal
- combined

- limited defect
- bone fragments have contact
- •segmental defects ("defect-diastase")
- •large
- subtotal
-

AO principles of classification

AO principles of classification

A - limited defects

A – limited defects

B – bone fragments have contact

A – limited defects

B – bone fragments have contact

C – bone fragments have no contact (segmental defects, "defect-diastase")

A – limited defects

B – bone fragments have contact

C – bone fragments have no contact (segmental defects, "defect-diastase")

D – complete articular defects

Types and groups of long bone defects

A – limited defects (<30%)

A – limited defects (<30%)

A1 – diaphyseal

A – limited defects (<30%)

A1 – diaphyseal

A2 – metaphyseal

A – limited defects (<30%)

A1 – diaphyseal

A2 – metaphyseal

A3 – epyphiseal

B – bone fragments have contact

B – bone fragments have contact

B1 – full contact with the anatomical shortening

B – bone fragments have contact

B1 – full contact with the anatomical shortening

B2 – limited contact without anatomical shortening

B – bone fragments have contact

B1 – full contact with the anatomical shortening

B2 – limited contact without anatomical shortening ("NU with bone loss")

B3 – limited contact with anatomic shortening

C – bone fragments have no contact (segmental defects, "defect-diastase")

C – bone fragments have no contact (segmental defects, "defect-diastase")

C1 – segmental defectswithout shortening

C – bone fragments have no contact (segmental defects, "defect-diastase")

C1 – segmental defectswithout shortening

C2 – segmental defects with shortening

C – bone fragments have no contact (segmental defects, "defect-diastase")

C1 – segmental defectswithout shortening

C2 – segmental defects with shortening

C3 – subtotal defects

D – complete articular defects

D – complete articular defects

D1 – epiphyseal

D – complete articular defects

D1 - epiphyseal

D2 – epimethaphyseal

D – complete articular defects

D1 – epiphyseal

D2 – epimethaphyseal

D3 – epimethadiaphyseal

D1 – epiphyseal

D2 – epimethaphyseal

D3 – epimethadiaphyseal

D4 – amputation

- A limited defects
- **B** bone fragments have contact
- **C** bone fragments have no contact (segmental defects, "defect-diastase")
- **D** complete articular defects

- A limited defects
- **B** bone fragments have contact
- **C** bone fragments have no contact (segmental defects, "defect-diastase")
- **D** complete articular defects

- A limited defects
- **B** bone fragments have contact
- **C** bone fragments have no contact (segmental defects, "defect-diastase")
- **D** complete articular defects

- **C1 –** segmental defects without shortening
- C2 segmental defects with shortening
- C3 subtotal defects

- A limited defects
- **B** bone fragments have contact
- **C** bone fragments have no contact (segmental defects, "defect-diastase")
- **D** complete articular defects

- C1 segmental defects without shortening
- C2 segmental defects with shortening
- C3 subtotal defects

... let's try to use!

Type A

A – limited defects (<20%)

A1 – diaphyseal

A2 – metaphyseal

A3 – epiphyseal

Type A: Grafting

Grafting

by not blood-supplied grafts

- autografts
- •allografts
- biomaterials (decalcified bone matrix)
- •synthetic bone substitutes
- •biocomposites

Type A1.3: Splint transport

Type B

B – bone fragments have contact

B1 – full contact with the anatomical shortening

B2 – limited contact without anatomical shortening

B3 – limited contact with anatomic shortening

Type B1: Monolocal distraction

Type B1: Polylocal distraction

Automatic high fractional distractor

Type B1: Lengthening over nail (LON)

... and LOP

Type B1: LATN and LATP

Type B1: Internal distractors

Albizza Nail Fit-bone Nail ISKD

Precise Nail

Use of internal distractor

Type B2: ExFix + grafting

Type B2: ExFix + grafting

Type B2: ExFix + grafting

Type B2: ExFix + grafting

Type B2: ExFix + grafting

Type B3: ExFix + grafting or SEFaN

Type B3: ExFix + grafting or SEFaN

Type B3: ExFix + grafting or SEFaN

Type C

C – bone fragments have no contact (segmental defects, "defect-diastase")

C1 – segmental defects without shortening

C2 – segmental defects with shortening

C3 – subtotal (large) defects

Type C

Grafting by free perfused grafts

Type C: Masquelet's technique

Benjamin C. Taylor et al.

Type C: bone transport

Type C: transverse bone transport

Type C3: Ilizarov reconstructions

Type C: Prosthetics (by titanium cage)

Type D

D – complete articular defects

D1 – epiphyseal

D2 – epimethaphyseal

D3 – epimethadiaphyseal

D4 – amputation

Type D: Arthroplasty

Prosthetics

Type D2: Reconstructive surgery

Type D3: BTON

(D→B1)

What we have not discussed ...

... but what so affects the choice of method

Deformation

+ Defect

Bone defect + soft tissues defect

Bone defect + soft tissues defect + knee stiffness

Take-home message

AO principles based LBDC can provide:

- comparison of the effectiveness of different treatment options for each type and group of defects (1st step)
- selection of the best methods for each type and group of defects (2nd step)
- create the register of long bone defects (treatment)

Accepted

Event program

AOTrauma Europe Masters Course— External Fixation

Circular Frame for Deformities and Bone Defects

September 8-9, 2017 Moscow, Russia

conditions	
Clinical and radiographic evaluation of nonunion	M Jackson
Biology of distraction osteogenesis and can we accelerate it?	A Volna
Case-based lecture—treatment strategies for nonunion with circular frame	P Kulesh
LUNCH BREAK	
Case-based lecture—type B bone defects treatment (bone lengthening)—tips and tricks	F Monsell
Case-based lecture—types C and D bone defects treatment (bone transport)	Lerner
Modulation of bone transport—the problem of bad regenerate	M Jackson
Case-based lecture—circular external fixation in the management of bone infection	S Reid
Reflection and discussion	F Monsell
Discussion group 1 Complex nonunion and bone defect treatment	All faculty
	Clinical and radiographic evaluation of nonunion Biology of distraction osteogenesis and can we accelerate it? Case-based lecture—treatment strategies for nonunion with circular frame LUNCH BREAK Case-based lecture—type B bone defects treatment (bone lengthening)—tips and tricks Case-based lecture—types C and D bone defects treatment (bone transport) Modulation of bone transport—the problem of bad regenerate Case-based lecture—circular external fixation in the management of bone infection Reflection and discussion Discussion group 1

Accepted

São Paulo, Brazil July 31, 2018.

Take-home message

Thank You!